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1 Executive Summary

Over the five year period, this project has mainly been been concerned about developing a theory
for statistical analysis of shapes of objects, both two and three-dimensional. Focusing on the
boundaries of these objects, our framework is for shape analysis of curves and surfaces. The
main achievements were development of tools for: (1) Quantifying Shape Differences: Given any
two objects, we can quantify differences between their shapes. (2) Achieve Desired Invariance:
Our notion of shape is invariant to certain transformations of curves rigid motion, scaling and
re-parameterization. (3) Compute Summary Statistics: Given a collection of shapes and shape
classes we can generate summary statistics mean, covariance, etc, to characterize a shape class.
(4) Stochastic Modeling: We have developed probability models that capture observed variability
in shape classes. These models form priors for Bayesian inferences. (5) Statistical Inferences:
We have studied statistical evaluations, such as hypothesis testing, likelihood ratios, performance
bounds, etc, for shape analysis. The salient components of this differential geometric framework are
following. First, we define a space of curves or surfaces by choosing a mathematical representation
for these objects and establish a Hilbert submanifold(s) for such representations. Then, we choose
a Riemannian metric, usually an elastic metric, for measuring distances on such manifolds. We
arrive at a shape manifold by imposing remaining invariances in the representation. For these
shape spaces, we have developed two numerical techniques for computing geodesic paths. Finally,
we define and compute empirical statistics, and define probability models on tangent bundles.

The resulting statistical models are then used to characterize objects in images according to
shapes, for using in object detection, tracking and recognition. We have demonstrated these tools in
different application scenarios including general computer vision and image understanding, human
biometrics, bioinformatics, and medical image analysis. More specially, we have studied the use
of prior shape models in detecting targets in noisy/corrupted images (Bayesian active contours),
finding shape models in point clouds derived from images, shape analysis of facial surfaces generated
from laser scans, human and activity recognition in videos using shapes of silhouettes, classification
of human subjects into control and diseased cases using shapes of their anatomical parts, and
structural matching and classification of proteins using the shapes of their backbones.

2 Research Accomplishments

Over the five year period, this project has mainly been been concerned about developing a theory
for statistical analysis of shapes of objects, both two and three-dimensional. Focusing on the
boundaries of these objects, our framework is for shape analysis of curves and surfaces. The main
achievements is this research are development of tools for the following important tasks:

1. Quantifying Shape Differences: Given any two objects, we can quantify differences be-
tween their shapes.

2. Achieve Desired Invariance: Our notion of shape is invariant to certain transformations of
curves rigid motion, scaling and re-parameterization and the ensuing analysis is independent
of these nuisance variables.

3. Summary Statistics: Given a collection of shapes and shape classes we can generate sum-
mary statistics mean, covariance, etc, to characterize a shape class.

4. Stochastic Modeling: We have developed probability models that capture observed vari-
ability in shape classes. These models form priors for Bayesian inferences.
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Figure 1: A system of statistical analysis of shapes in images.

5. Statistical Inferences: We have studied statistical evaluations, such as hypothesis testing,
likelihood ratios, performance bounds, etc, for shape analysis.

In summary, our goal is to develop a statistical framework where we can treat shapes of curves and
surfaces as random quantities, i.e. as variables taking values in well-defined spaces governed by
underlying probability densities. An outline of such a comprehensive system for statistical shape
analysis is laid out in Figure 1. In this system, the input images are processed to extract contours of
interest, either by hand or automatically or both. These contours are mathematically represented
as points on certain infinite-dimensional differentiable manifolds, denoted as the shape space in the
figure. The dissimilarities between shapes of two contours are quantified using lengths of geodesic
paths between the corresponding points on the shape space. Using the geometry of the shape space,
tools for statistical analysis of shapes are derived. In particular, the concept of an average shape is
developed on the shape space. Probability models, estimated from the training shapes in a shape
class, are used for future Bayesian inferences on image data. A contour estimated in this Bayesian
framework can then be used for classifying objects in images. Geodesic paths between a shape and
its reflection are useful in symmetry analysis.

What makes statistical analysis of shapes difficult? It is quite easy for us, as human beings,
to observe and to analyze shapes, and to perform many of the aforementioned tasks without much
difficulty.

1. Invariance:
One important challenge in shape analysis comes from the fact that our notion of shape is in-
variant to certain transformations, such as translations, rotations, and rescaling. Abstractly,
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shape is described as a property that remains unchanged under these transformations and this
aspect must be included in our mathematical formulations. Another aspect of invariance, of
curves and surfaces, although not readily visible through pictures, is the issue of parametriza-
tion. A curve or a surface can be parameterized in many ways; a re-parametrization does not
change its shape and, thus, any analysis of shape should be independent of the parameteri-
zation.

2. Nonlinearity:
Although there are a variety of mathematical representations for studying shapes, they all
share the following important property. The spaces formed by these representations are
nonlinear. That is, they are not vector spaces and one can not use the classical vector
calculus to perform operations on shapes. Operations such as addition, multiplication, and
subtraction are not valid on these spaces.

3. Infinite-Dimensionality:
Lastly, the study of shapes of (continuous) curves and surfaces introduces an additional
challenge of high, often infinite, dimensionality. This is because curves and surfaces are
formally represented by functions, and spaces of functions are usually infinite dimensional.

The salient components of this differential geometric framework are following whether we con-
sider shape analysis of curves or surfaces. First, we define a space of curves or surfaces by choosing
a mathematical representation for these objects and establish a Hilbert submanifold(s) for such
representations. Since we are interested in continuous objects, the resulting spaces are infinite-
dimensional; additionally, certain nonlinear constraints such as length (or size) constraint and the
orientation constraints, result in the underlying spaces being nonlinear manifolds. Then, we choose
a Riemannian metric, usually an elastic metric for measuring distances on such manifolds. We
arrive at a shape manifold by imposing remaining invariances in the representation. This is done
using the algebraic notion of forming quotient spaces by removing the actions of rotation and
the re-parameterization groups (scale and translation are removed previously). For the resulting
quotient space, termed shape spaces, we have developed two numerical techniques for computing
geodesic paths: shooting method and path-straightening method. Using these methods we compute
geodesics between arbitrary shapes on the shape manifold; these geodesics provide use with a tool
for matching, comparing, deforming, and quantifying differences in shapes. Finally, we define and
compute empirical statistics, and define probability models on tangent bundles.

Some specific items of this framework are elaborated further in the next sections.

2.1 Theory of Shape of Analysis

1. Shape Analysis of Planar Elastic Curves: We have studied shapes of planar arcs and
closed contours modeled on elastic curves obtained by bending, stretching or compressing
line segments non-uniformly along their extensions. Shapes are represented as elements of a
quotient space of curves obtained by identifying those that differ by shape-preserving trans-
formations. The elastic properties of the curves are encoded in Riemannian metrics on these
spaces. Geodesics in shape spaces are used to quantify shape divergence and to develop
morphing techniques. The shape spaces and metrics constructed are novel and offer an en-
vironment for the study of shape statistics. Elasticity leads to shape correspondences and
deformations that are more natural and intuitive than those obtained in several existing mod-
els. Applications of shape geodesics to the definition and calculation of mean shapes and to
the development of shape clustering techniques were also investigated. For further details,
please refer to the article [14].
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2. Shape Analysis of Elastic Curves in Euclidean Spaces: This work introduces a square-
root velocity (SRV) representation for analyzing shapes of curves in Euclidean spaces using an
elastic metric. This SRV representation has several advantages: the well-known elastic metric
simplifies to the L

2 metric, the re-parameterization group acts by isometries, and the space
of unit length curves becomes the familiar unit sphere. The shape space of closed curves is
quotient space of (a submanifold of) the unit sphere, modulo rotation and re-parameterization
groups, and one finds geodesics in that space using a path-straightening approach. These
geodesics and geodesic distances provide a framework for optimally matching, deforming and
comparing shapes. Several experiments are presented to demonstrate these ideas: (i) Shape
analysis of cylindrical helices for studying structures of protein backbones, (ii) Shape analysis
of facial curves for use in recognition, (iii) A wrapped probability distribution to capture
shapes of planar closed curves, and (iv) Parallel transport of deformations from one object
to another for predicting shapes from novel poses. For further details, please refer to the
conference articles [3, 4] and the journal article [18].

3. Path-Straightening for Computing Geodesic Paths: In order to analyze shapes of
continuous curves in R

n, we have developed a numerical technique for computing geodesics
between them in the shape space. To compute geodesics between any two curves, we connect
them with an arbitrary path, and then iteratively straighten this path using the gradient of
an energy associated with this path. The limiting path of this path-straightening approach is
a geodesic. Next, we consider the shape space of these curves by removing shape-preserving
transformations such as rotation and re-parametrization. To construct a geodesic in this
shape space, we construct the shortest geodesic between the all possible transformations of
the two end shapes; this is accomplished using an iterative procedure. We provide step-
by-step descriptions of all the procedures, and demonstrate them with simple examples in
[9].

4. Parameterization-Invariant of Shape Analysis of 3D Objects: In this work, we have
introduced a novel Riemannian framework for shape analysis of 3D objects. Focusing on
the boundaries of these objects, i.e. surfaces, we derive a distance function between any
two surfaces that is invariant to rigid motion, global scaling, and re-parameterizations. It is
the last part that presents the main difficulty. Our solution to this problem is twofold: (1)
define a special representation, called q-function, to represent each surface, and (2) develop
a gradient-based algorithm to optimize over different re-parameterizations of a surface. The
second step is akin to moving the mesh on a surface to optimize its placement. (This is
different from the current methods that work with fixed meshes of 3D objects.) Under the
chosen representation with the L

2 metric, the action of the re-parameterization group is by
isometries This results in, to our knowledge, the first Riemannian distance between surfaces
to have all the desired invariances. We demonstrate this framework with several examples
using toy shapes, anatomical objects, and facial surfaces. For further details, please refer to
the paper [11].

2.2 Applications of Shape Analysis in Image Understanding

2.2.1 General Computer Vision and Image Understanding

1. Intrinsic Bayesian Active Contours: We have developed a framework for incorporating
prior information about high-probability shapes in the process of contour extraction and
object recognition in images. Here one studies shapes as elements of an infinite-dimensional,
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non-linear quotient space, and statistics of shapes are defined and computed intrinsically
using differential geometry of this shape space. Prior models on shapes are constructed
using probability distributions on tangent bundles of shape spaces. Similar to the past work
on active contours, where curves are driven by vector fields based on image gradients and
roughness penalties, we incorporate the prior shape knowledge in the form of vector fields on
curves. Through experimental results, we demonstrate the use of prior shape models in the
estimation of object boundaries, and their success in handling partial obscuration and missing
data. Furthermore, we describe the use of this framework in shapebased object recognition
or classification. For further details, please refer to the article [5].

Figure 2: Two examples of shape extraction from corrupted images in the absence (top) and the
presence (bottom) of the prior shape model. The last panel shows the prior mean. Example taken
from [5].

2. Shape Detection in Point Clouds: We study the problem of classifying shapes in point
clouds that are made of sampled contours corrupted by clutter and observation noise. Taking
an analysis-by-synthesis approach, we simulate high-probability configurations of sampled
contours using models learnt from the training data to evaluate the given test data. To
facilitate simulations, we develop statistical models for sources of (nuisance) variability: (i)
shape variations within classes, (ii) variability in sampling continuous curves, (iii) pose and
scale variability, (iv) observation noise, and (v) points introduced by clutter. The variability
in sampling closed curves into finite points is represented by positive diffeomorphisms of a
unit circle and we derive probability models on these functions using their square-root forms
and the Fisher-Rao metric. Using a Monte Carlo approach, we simulate configurations using
a joint prior on the shape-sample space and compare them to the data using a likelihood
function. Average likelihoods of simulated configurations lead to estimates of posterior prob-
abilities of different classes and, hence, Bayesian classification. Further details can be found
in the manuscript Srivastava and Jermyn [17].
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Figure 3: (a) Original images with points clouds extracted from them, (b) Estimated posterior of
different shape classes in point clouds, (c) and (d) Some high probability shapes in given clouds.

2.2.2 Human Biometrics

1. 3D Face Recognition Using Shapes of Facial Surfaces: This research focused on the
problem of analyzing variability in shapes of facial surfaces using a Riemannian framework,
a fundamental approach that allows for joint matchings, comparisons, and deformations of
faces under a chosen metric. The starting point is to impose a curvilinear coordinate system,
named the Darcyan coordinate system, on facial surfaces; it is based on the level curves
of the surface distance function measured from the tip of the nose. Each facial surface is
now represented as an indexed collection of these level curves. The task of finding optimal
deformations, or geodesic paths, between facial surfaces reduces to that of finding geodesics
between level curves, which is accomplished using the theory of elastic shape analysis of 3D
curves. Elastic framework allows for nonlinear matching between curves and between points
across curves. The resulting geodesics provide optimal elastic deformations between faces and
an elastic metric for comparing facial shapes. We have demonstrates this idea using several
public databases. The results and discussions have been presented in a number of papers
[15, 19, 16, 1].

We have also explored the use of shapes of noses for partial human biometrics by looking
at human nose. The basic idea is to represent nasal surfaces using indexed collections of
iso-curves, and to analyze shapes of noses by comparing their corresponding curves. We
extend past work in Riemannian analysis of shapes of closed curves in R

3 to obtain a similar
Riemannian analysis for nasal surfaces. In particular, we obtain algorithms for computing
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Figure 4: Top: Examples of facial surfaces represented by a collection of level curves. Performance
curves (left: CMC and right: ROC) using elastic shape analysis and a commonly used ICP algorithm
for FRGC face database.

geodesics, computing statistical means, and stochastic clustering. We demonstrate these
ideas in two application contexts: evaluate authentication and identification performances
using nasal shapes on a large database involving 2000 scans, and hierarchical organization of
nose databases to allow for efficient searches. Please refer to the article [2] for more details.

Figure 5: Geodesic paths between source and target noses (a) First row: intra-class path, source
and target with different expressions (b) Three last rows: inter-class path

More recently, we have explored the use of shape analysis to estimate the facial expression
and, thus, the state of mind of a person. Some promising preliminary results are presented
in [13].

2. Gait-Based Human Recognition: In this work we have studied human identification by
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gait recognition where subjects’ gaits are represented by time series of silhouettes. Each
silhouette is a simple, closed, planar curve that is represented by a Square-Root Velocity
(SRV) function; this function enables comparisons of shapes of silhouettes in a manner that
is invariant to rotations, translations, scalings, and re-parameterizations. We identify the
nonlinear space (manifold) of allowable SRV functions and endow it with a Riemannian
metric that compares shapes under optimal elastic deformations. A gait cycle becomes a
cyclic stochastic process on this manifold and cadence relates to the rate of execution of this
cycle. Using the differential geometry of the underlying shape manifold, we compute a mean
gait cycle for each subject as a template. An observation model, that a test sequence is a
result of a random perturbation of a subject’s template, gives rise to a likelihood function for
classification. Evaluation of likelihood involves temporal registration – linear and nonlinear
– of a test cycle with the template, a process that may remove the effect of cadence. We
study the effect of cadence and its removal on gait-based recognition of human subjects. It
is observed that the linear registration, which preserves cadence, performs better than the
nonlinear registration, which removes cadence. For further discussion, please refer to the
papers [6, 8, 7]

3. Activity Recognition Using 2D Shapes in Vidoes: This research was performed in
collaboration with Ashok Veeraraghavan and Prof. Rama Chellappa of University of Mary-
land, College Park. In this work we provide a systematic model-based approach to learn
the nature of such temporal variations (time warps) while simultaneously allowing for the
spatial variations in the descriptors. We illustrate our approach for the problem of action
recognition and provide experimental justification for the importance of accounting for rate
variations in action recognition. The model is composed of a nominal activity trajectory
and a function space capturing the probability distribution of activity-specific time warping
transformations.We use the square-root parameterization of time warps to derive geodesics,
distance measures, and probability distributions on the space of time warping functions. We
then design a Bayesian algorithm which treats the execution rate function as a nuisance
variable and integrates it out using Monte Carlo sampling, to generate estimates of class
posteriors. This approach allows us to learn the space of time warps for each activity while
simultaneously capturing other intra- and interclass variations. For further details, please
refer to [20].

2.2.3 Medical Image Analysis

We have applied the framework for shape analysis of surfaces of 3D brain structures to classify
human subjects into control and disease cases using the shapes of their brain substructures. While
past comparisons of surfaces optimized over rigid motions they mostly utilize the given parameteri-
zations of surfaces. In our mathematical representation of surfaces, called q-maps, the L

2 distances
between such maps are invariant to re-parameterizations. This allows for removing the parame-
terization variability by optimizing over the re-parameterization group. This results in a proper
parameterization-invariant distance shapes of surfaces. We demonstrate this method in shape anal-
ysis of eleven brain structures. Specifically, we show that the joint shape analysis of multiple brain
structures, for 34 subjects in Detroit Fetal Drug and Alcohol Exposure Cohort study, results in
approx. 92% classification rate for ADHD cases and controls [10].
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Figure 6: Top: Initial and final matching between two anatomical surfaces. Bottom: Cost function
and deformation fields for surface 2.

2.2.4 Bioinformatics: Protein Structure Analysis

Structure comparison of proteins is an important tool for understanding the evolutionary relation-
ships between proteins, predicting protein structures and predicting protein functions. There are
two types of protein structure comparison problems, comparison of backbone structures (structure
alignment) and comparison of the binding or active sites of proteins (surface matching). Proteins
are flexible molecules and rigid matching of either backbones or surfaces of proteins, as used by
most current methods, has the difficulty of recognizing relatively distant, functionally important
similarities. Another well known issue in structure comparison is the lack of rigorous distance met-
ric and comprehensive statistical framework for assessing the statistical significance of similarities
between individual protein structures and classes of protein structures. Despite many past studies,
protein structure alignment is still a challenging problem, especially for cases where structures un-
dergo significant conformational changes or have large insertion or deletion of unrelated structural
fragments. In this worked, we focused on the comparisons of backbone structures and develop
methods based on elastic shape analysis. As a result, a formal distance can be calculated and
geodesic paths, showing optimal deformations between conformations/structures, can be computed
for any two backbone structures. It can also be used to average shapes of conformations associated
with similar proteins. Using examples of protein backbones we demonstrate the matching and clus-
tering of proteins using the backbone geometries, the secondary labels and the primary sequences.
For details, please refer to the paper [12].
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